Random error sampling-based recurrent neural network architecture optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation

We describe recurrent neural networks (RNNs), which have attracted great attention on sequential tasks, such as handwriting recognition, speech recognition and image to text. However, compared to general feedforward neural networks, RNNs have feedback loops, which makes it a little hard to understand the backpropagation step. Thus, we focus on basics, especially the error backpropagation to com...

متن کامل

Error Modeling of Reduced IMU using Recurrent Neural Network

Although GNSS/IMU integration has been studied for decades, an efficient estimator of their integration has remained a challenge. In the statistical approaches, the observation model of sensors and distribution of data must be known beforehand. This paper proposes a deep learning based approach to integrate GPS and reduced IMU information. In contrast to statistical approaches, our approach lea...

متن کامل

From Recurrent Neural Network to Long Short Term Memory Architecture

Despite more than 30 years of handwriting recognition research, Recognizing the unconstrained sequence is still a challenge task. The difficulty of segmenting cursive script has led to the low recognition rate. Hidden Markov Models (HMMs) are considered as state-of-theart methods for performing non-constrained handwriting recognition. However, HMMs have several well-known drawbacks. One of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Applications of Artificial Intelligence

سال: 2020

ISSN: 0952-1976

DOI: 10.1016/j.engappai.2020.103946